Hardy Inequalities with Boundary Terms
نویسندگان
چکیده
In this note, we present some Hardy type inequalities for functions which do not vanish on the boundary of a given domain. We establish these inequalities for both bounded and unbounded domains and also obtain the best embedding constants in these inequalities for special domains. Our results are motivated by and building upon some recent work in [5, 6, 9, 12].
منابع مشابه
Hardy-sobolev-maz’ya Inequalities for Arbitrary Domains
1.1. Hardy-Sobolev-Maz’ya inequalities. Hardy inequalities and Sobolev inequalities bound the size of a function, measured by a (possibly weighted) L norm, in terms of its smoothness, measured by an integral of its gradient. Maz’ya [22] proved that for functions on the half-space R+ = {x ∈ R : xN > 0}, N ≥ 3, which vanish on the boundary, the sharp version of the Hardy inequality can be combine...
متن کاملGeneral Hardy-Type Inequalities with Non-conjugate Exponents
We derive whole series of new integral inequalities of the Hardy-type, with non-conjugate exponents. First, we prove and discuss two equivalent general inequa-li-ties of such type, as well as their corresponding reverse inequalities. General results are then applied to special Hardy-type kernel and power weights. Also, some estimates of weight functions and constant factors are obtained. ...
متن کاملA Review of Hardy Inequalities
We review the literature concerning the Hardy inequality for regions in Euclidean space and in manifolds, concentrating on the best constants. We also give applications of these inequalities to boundary decay and spectral approximation. AMS subject classifications: 35P99, 35P20, 47A75, 47B25 keywords: Hardy inequality, boundary decay, Laplacian, elliptic operators, spectral theory, eigenfunctio...
متن کاملA spectral result for Hardy inequalities
Let P be a linear, elliptic second order symmetric operator, with an associated quadratic form q, and let W be a potential such that the Hardy inequality λ0 ∫ Ω Wu 2 ≤ q(u) holds with (non-negative) best constant λ0. We give sufficient conditions so that the spectrum of the operator 1 W P is [λ0,∞). In particular, we apply this to several well-known Hardy inequalities: (improved) Hardy inequali...
متن کاملA Geometric Characterization of a Sharp Hardy Inequality
In this paper, we prove that the distance function of an open connected set in R with a C boundary is superharmonic in the distribution sense if and only if the boundary is weakly mean convex. We then prove that Hardy inequalities with a sharp constant hold on weakly mean convex C domains. Moreover, we show that the weakly mean convexity condition cannot be weakened. We also prove various impro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003